
–1–

Deconvolution Signal ModelsDeconvolution Signal Models
• Simple or Fixed-shape regression (previous talks):

★ We fixed the shape of the HRF — amplitude varies
★ Used -stim_times to generate the signal model
(AKA the “ideal”) from the stimulus timing

★ Found the amplitude of the signal model in each
voxel — solution to the set of linear equations = β weights

• Deconvolution or Variable-shape regression (now):
★ We allow the shape of the HRF to vary in each
voxel, for each stimulus class

★ Appropriate when you donʼt want to over-
constrain the solution by assuming an HRF shape

★ Caveat : need to have enough time points during
the HRF in order to resolve its shape (e.g., TR ≤ 3 s)

–2–

Deconvolution: Pros & Cons (+ & –)
+ Letting HRF shape varies allows for subject and
regional variability in hemodynamics
+ Can test HRF estimate for different shapes (e.g.,
are later time points more “active” than earlier?)
– Need to estimate more parameters for each
stimulus class than a fixed-shape model (e.g., 4-15
vs. 1 parameter = amplitude of HRF)
– Which means you need more data to get the
same statistical power (assuming that the fixed-shape
model you would otherwise use was in fact “correct”)
– Freedom to get any shape in HRF results can
give weird shapes that are difficult to interpret

–3–

Expressing HRF via Regression Unknowns
• The tool for expressing an unknown function as a
finite set of numbers that can be fit via linear
regression is an expansion in basis functions

★ The basis functions ψq(t) & expansion order p are known
o Larger p ⇒ more complex shapes & more parameters

★ The unknowns to be found (in each voxel) comprises the
set of weights βq for each ψq(t)

• β weights appear only by multiplying known values,
and HRF only appears in signal model by linear
convolution (addition) with known stimulus timing
• Resulting signal model still solvable by linear regression

h(t) = !
0
"
0
(t) + !

1
"
1
(t) + !

2
"
2
(t) +! = !q" q (t)

q=0

q= p

#

–4–

• Need to describe HRF shape and magnitude with a finite
number of parameters
★ And allow for calculation of h(t) at any arbitrary point in
time after the stimulus times:

• Simplest set of such functions are tent functions
★ Also known as “piecewise linear splines”

T (x) =
1! x for !1 < x < 1

0 for x > 1

"
#
$

time

h

t = 0 t =TR t = 2⋅TR t = 3⋅TR t = 4⋅TR t = 5⋅TR

T
t ! 3 "TR
2 "TR

#
$%

&
'(

3dDeconvolve with “Tent Functions”

r
n
= h(t

n
!"

k
)

k=1

K

= sum of HRF copies

N.B.: cubic splines
are also available

–5–

Tent Functions = Linear Interpolation
• Expansion of HRF in a set of spaced-apart tent functions is the
same as linear interpolation between “knots”

• Tent function parameters are also easily interpreted as
function values (e.g., β2 = response at time t = 2⋅L after stim)
• User must decide on relationship of tent function grid spacing
L and time grid spacing TR (usually would choose L ≥ TR)
• In 3dDeconvolve: specify duration of HRF and number of β
parameters (details shown a few slides ahead)

h(t) = !
0
"T

t

L

#
$%

&
'(
+ !

1
"T

t) L
L

#
$%

&
'(
+ !

2
"T

t) 2 "L
L

#
$%

&
'(
+ !

3
"T

t) 3 "L
L

#
$%

&
'(
+!

time
β0

β1

β2 β3

β4

L 2⋅L 3⋅L 4⋅L 5⋅L0

β5

N.B.: 5 intervals = 6 β weights

“knot” times

h

A

–6–

Tent Functions: Average Signal Change
• For input to group analysis, usually want to compute average
signal change
★ Over entire duration of HRF (usual)
★ Over a sub-interval of the HRF duration (sometimes)

• In previous slide, with 6 β weights, average signal change is
 1/2 β0 + β1 + β2 + β3 + β4 +

1/2 β5

• First and last β weights are scaled by half since they only
affect half as much of the duration of the response
• In practice, may want to use 0⋅β0 since immediate post-
stimulus response is not neuro-hemodynamically relevant
• All β weights (for each stimulus class) are output into the “bucket”
dataset produced by 3dDeconvolve
• Can then be combined into a single number using 3dcalc

–7–

Deconvolution and Collinearity
• Regular stimulus timing can lead to collinearity!

time

β0 β1 β2 β3 β4 β5

β0 β1 β2 β3 β4 β5

β0 β1 β2 β3

 β0
+β4

 β1
+β5

 β2 β3 β0
+β4

 β1
+β5

 β2 β3 β0
+β4

 β1
+β5

 β2 β3Equations
at each data
time point:
Cannot tell
β0 from β4,
or β1 from β5

β0 β1 β2 β3 β4 β5

HRF from
stim #1

stim #1

Tail of HRF
from #1 overlaps
head of HRF
from #2, etc

A

–8–

Deconvolution Example - The Data
• cd AFNI_data2

★ data is in ED/ subdirectory (10 runs of 136 images each; TR=2 s)
★ script = s1.afni_proc_command (in AFNI_data2/ directory)

o stimuli timing and GLT contrast files in misc_files/
★ this script runs program afni_proc.py to generate a shell
script with all AFNI commands for single-subject analysis

o Run by typing tcsh s1.afni_proc_command ; then copy/paste
tcsh -x proc.ED.8.glt |& tee output.proc.ED.8.glt

• Event-related study from Mike Beauchamp
★ 10 runs with four classes of stimuli (short videos)

o Tools moving (e.g., a hammer pounding) - ToolMovie
o People moving (e.g., jumping jacks) - HumanMovie
o Points outlining tools moving (no objects, just points) - ToolPoint
o Points outlining people moving - HumanPoint

★ Goal: find brain area that distinguishes natural motions (HumanMovie and
HumanPoint) from simpler rigid motions (ToolMovie and ToolPoint)

Text output from
programs goes to
screen and file

–9–

Master Script for Data Analysis
afni_proc.py \
 -dsets ED/ED_r??+orig.HEAD \
 -subj_id ED.8.glt \
 -copy_anat ED/EDspgr \
 -tcat_remove_first_trs 2 \
 -volreg_align_to first \
 -regress_stim_times misc_files/stim_times.*.1D \
 -regress_stim_labels ToolMovie HumanMovie \
 ToolPoint HumanPoint \
 -regress_basis 'TENT(0,14,8)' \
 -regress_opts_3dD \
 -gltsym ../misc_files/glt1.txt -glt_label 1 FullF \
 -gltsym ../misc_files/glt2.txt -glt_label 2 HvsT \
 -gltsym ../misc_files/glt3.txt -glt_label 3 MvsP \
 -gltsym ../misc_files/glt4.txt -glt_label 4 HMvsHP \
 -gltsym ../misc_files/glt5.txt -glt_label 5 TMvsTP \
 -gltsym ../misc_files/glt6.txt -glt_label 6 HPvsTP \
 -gltsym ../misc_files/glt7.txt -glt_label 7 HMvsTM

• Master script program
• 10 input datasets
• Set output filenames
• Copy anat to output dir
• Discard first 2 TRs
• Where to align all EPIs
• Stimulus timing files (4)
• Stimulus labels

• HRF model
• Specifies that next

lines are options to be
passed to
3dDeconvolve
directly (in this case,
the GLTs we want
computed)

This script generates file proc.ED.8.glt (180 lines), which
contains all the AFNI commands to produce analysis results

into directory ED.8.glt.results/ (148 files)

–10–

Shell Script for Deconvolution - Outline
• Copy datasets into output directory for processing
• Examine each imaging run for outliers: 3dToutcount
• Time shift each runʼs slices to a common origin: 3dTshift
• Registration of each imaging run: 3dvolreg
• Smooth each volume in space (136 sub-bricks per run): 3dmerge
• Create a brain mask: 3dAutomask and 3dcalc
• Rescale each voxel time series in each imaging run so that its
average through time is 100: 3dTstat and 3dcalc
★ If baseline is 100, then a βq of 5 (say) indicates a 5% signal change in that

voxel at tent function knot #q after stimulus
★ Biophysics: believe % signal change is relevant physiological parameter

• Catenate all imaging runs together into one big dataset (1360
time points): 3dTcat
★ This dataset is useful for plotting -fitts output from 3dDeconvolve

and visually examining time series fitting
• Compute HRFs and statistics: 3dDeconvolve

–11–

Script - 3dToutcount
set list of runs
set runs = (`count -digits 2 1 10`)
run 3dToutcount for each run
foreach run ($runs)
 3dToutcount -automask pb00.$subj.r$run.tcat+orig > outcount_r$run.1D
end

Via 1dplot outcount_r??.1D
3dToutcount searches for “outliers” in data time series;

You should examine noticeable runs & time points

–12–

Script - 3dTshift
run 3dTshift for each run
foreach run ($runs)
 3dTshift -tzero 0 -quintic -prefix pb01.$subj.r$run.tshift \
 pb00.$subj.r$run.tcat+orig
end

• Produces new datasets where each time series has been
shifted to have the same time origin
• -tzero 0 means that all data time series are interpolated to
match the time offset of the first slice

• Which is what the slice timing files usually refer to
• Quintic (5th order) polynomial interpolation is used

• 3dDeconvolve will be run on these time-shifted datasets
• This is mostly important for Event-Related FMRI studies, where the
response to the stimulus is briefer than for Block designs

• (Because the stimulus is briefer)
• Being a little off in the stimulus timing in a Block design is not likely to
matter much

–13–

Script - 3dvolreg
align each dset to the base volume
foreach run ($runs)
 3dvolreg -verbose -zpad 1 -base pb01.$subj.r01.tshift+orig'[0]' \
 -1Dfile dfile.r$run.1D -prefix pb02.$subj.r$run.volreg \
 pb01.$subj.r$run.tshift+orig
end

• Produces new datasets where each volume (one time point) has been
aligned (registered) to the #0 time point in the #1 dataset
• Movement parameters are saved into files dfile.r$run.1D

• Will be used as extra regressors in 3dDeconvolve to reduce motion artifacts

1dplot -volreg dfile.rall.1D
• Shows movement parameters for all
runs (1360 time points) in degrees and
millimeters
• Very important to look at this graph!
• Excessive movement can make an
imaging run useless — 3dvolreg
wonʼt be able to compensate

• Pay attention to scale of movements:
more than about 2 voxel sizes in a
short time interval is usually bad

–14–

Script - 3dmerge
blur each volume
foreach run ($runs)
 3dmerge -1blur_fwhm 4 -doall -prefix pb03.$subj.r$run.blur \
 pb02.$subj.r$run.volreg+orig
end

• Why Blur? Reduce noise by averaging neighboring voxels time series

• WhiteWhite curve = Data: unsmoothed
• YellowYellow curve = Model fit (R2 = 0.50)
• GreenGreen curve = Stimulus timing This is an extremely good fit for ER FMRI data!

–15–

Why Blur? - 2
• fMRI activations are (usually)

blob-ish (several voxels across)
• Averaging neighbors will also

reduce the fiendish multiple
comparisons problem
★ Number of independent “resels” will be smaller than

number of voxels (e.g., 2000 vs. 20000)
• Why not just acquire at lower resolution?

★ To avoid averaging across brain/non-brain interfaces
★ To project onto surface models

• Amount to blur is specified as FWHM
 (Full Width at Half Maximum) of spatial
 averaging filter (4 mm in script)

–16–

Script - 3dAutomask
create 'full_mask' dataset (union mask)
foreach run ($runs)
 3dAutomask -dilate 1 -prefix rm.mask_r$run pb03.$subj.r$run.blur+orig
end
get mean and compare it to 0 for taking 'union'
3dMean -datum short -prefix rm.mean rm.mask*.HEAD
3dcalc -a rm.mean+orig -expr 'ispositive(a-0)' -prefix full_mask.$subj

• 3dAutomask creates a mask of
contiguous high-intensity voxels (with
some hole-filling) from each imaging run
separately
• 3dMean and 3dcalc are used to
create a mask that is the union of all
the individual run masks
• 3dDeconvolve analysis will be
limited to voxels in this mask

• Will run faster, since less data to process Automask from EPI shown in red

–17–

Script - Scaling
scale each voxel time series to have a mean of 100
(subject to maximum value of 200)
foreach run ($runs)
 3dTstat -prefix rm.mean_r$run pb03.$subj.r$run.blur+orig
 3dcalc -a pb03.$subj.r$run.blur+orig -b rm.mean_r$run+orig \
 -c full_mask.$subj+orig \
 -expr 'c * min(200, a/b*100)' -prefix pb04.$subj.r$run.scale
end

• 3dTstat calculates the mean (through
time) of each voxelʼs time series data
• For voxels in the mask, each data point
is scaled (multiplied) using 3dcalc so
that itʼs time series will have mean = 100
• If an HRF regressor has max amplitude
= 1, then its β coefficient will represent
the percent signal change (from the mean)
due to that part of the signal model
• Scaled images are very boring to view

• No spatial contrast by design!
• Graphs have common baseline now

–18–

Script - 3dDeconvolve
3dDeconvolve -input pb04.$subj.r??.scale+orig.HEAD -polort 2 \
 -mask full_mask.$subj+orig -basis_normall 1 -num_stimts 10 \
 -stim_times 1 stimuli/stim_times.01.1D 'TENT(0,14,8)' \
 -stim_label 1 ToolMovie \
 -stim_times 2 stimuli/stim_times.02.1D 'TENT(0,14,8)' \
 -stim_label 2 HumanMovie \
 -stim_times 3 stimuli/stim_times.03.1D 'TENT(0,14,8)' \
 -stim_label 3 ToolPoint \
 -stim_times 4 stimuli/stim_times.04.1D 'TENT(0,14,8)' \
 -stim_label 4 HumanPoint \
 -stim_file 5 dfile.rall.1D'[0]' -stim_base 5 -stim_label 5 roll \
 -stim_file 6 dfile.rall.1D'[1]' -stim_base 6 -stim_label 6 pitch \
 -stim_file 7 dfile.rall.1D'[2]' -stim_base 7 -stim_label 7 yaw \
 -stim_file 8 dfile.rall.1D'[3]' -stim_base 8 -stim_label 8 dS \
 -stim_file 9 dfile.rall.1D'[4]' -stim_base 9 -stim_label 9 dL \
 -stim_file 10 dfile.rall.1D'[5]' -stim_base 10 -stim_label 10 dP \
 -iresp 1 iresp_ToolMovie.$subj -iresp 2 iresp_HumanMovie.$subj \
 -iresp 3 iresp_ToolPoint.$subj -iresp 4 iresp_HumanPoint.$subj \
 -gltsym ../misc_files/glt1.txt -glt_label 1 FullF \
 -gltsym ../misc_files/glt2.txt -glt_label 2 HvsT \
 -gltsym ../misc_files/glt3.txt -glt_label 3 MvsP \
 -gltsym ../misc_files/glt4.txt -glt_label 4 HMvsHP \
 -gltsym ../misc_files/glt5.txt -glt_label 5 TMvsTP \
 -gltsym ../misc_files/glt6.txt -glt_label 6 HPvsTP \
 -gltsym ../misc_files/glt7.txt -glt_label 7 HMvsTM \
 -fout -tout -full_first -x1D Xmat.x1D -fitts fitts.$subj -bucket stats.$subj

4 stim types

motion params

GLTs

HRF outputs

–19–

Results: Humans vs. Tools
• Color
overlay:
HvsT
GLT
contrast

• Blue
(upper)
graphs:
Human
HRFs

• Red
(lower)
graphs:
Tool
HRFs

–20–

Script - X Matrix

Via 1grayplot -sep Xmat.x1D

–21–

Script - Random Comments
•-polort 2

★Sets baseline (detrending) to use quadratic polynomials—in each run
•-mask full_mask.$subj+orig

★Process only the voxels that are nonzero in this mask dataset
•-basis_normall 1

★Make sure that the basis functions used in the HRF expansion all
have maximum magnitude=1

•-stim_times 1 stimuli/stim_times.01.1D
 'TENT(0,14,8)'
 -stim_label 1 ToolMovie

★The HRF model for the ToolMovie stimuli starts at 0 s after each
stimulus, lasts for 14 s, and has 8 basis tent functions

o Which have knots (breakpoints) spaced 14/(8-1) = 2 s apart
•-iresp 1 iresp_ToolMovie.$subj

★The HRF model for the ToolMovie stimuli is output into dataset
iresp_ToolMovie.ED.8.glt+orig

–22–

Script - GLTs
• -gltsym ../misc_files/glt2.txt -glt_label 2 HvsT

★ File ../misc_files/glt2.txt contains 1 line of text:
o -ToolMovie +HumanMovie -ToolPoint +HumanPoint
o This is the “Humans vs. Tools” HvsT contrast shown on Results slide

• This GLT means to take all 8 β coefficients for each stimulus class
and combine them with additions and subtractions as ordered:

• This test is looking at the integrated (summed) response to the
“Human” stimuli and subtracting it from the integrated response to
the “Tool” stimuli

•Combining subsets of the β weights is also possible with -gltsym :
• +HumanMovie[2..6] -HumanPoint[2..6]
• This GLT would add up just the #2,3,4,5, & 6 β weights for one

type of stimulus and subtract the sum of the #2,3,4,5, & 6 β weights
for another type of stimulus

o And also produce F- and t-statistics for this linear combination

LC = !"

0

TM !!! "
7

TM
+ "

0

HM
+!+ "

7

HM ! "
0

TP !!! "
7

TP
+ "

0

HP
+!+ "

7

HP

–23–

Script - Multi-Row GLTs
• GLTs presented up to now have had one row

★ Testing if some linear combination of β weights is nonzero;
test statistic is t or F (F =t 2 when testing a single number)

★ Testing if the X matrix columns, when added together to
form one column as specified by the GLT (+ and –), explain a
significant fraction of the data time series (equivalent to above)

• Can also do a single test to see if several different
combinations of β weights are all zero
 -gltsym ../misc_files/glt1.txt
 -glt_label 1 FullF

★ Tests if any of the stimulus classes have nonzero integrated
HRF (each name means “add up those β weights”) : DOF = (4,1292)

★ Different than the default “Full F-stat” produced by
3dDeconvolve, which tests if any of the individual β
weights are nonzero: DOF = (32,1292)

+ToolMovie
+HumanMovie
+ToolPoint
+HumanPoint

4 rows

–24–

Two Possible Formats for -stim_times
• If you donʼt use -local_times or -global_times,
3dDeconvolve will guess which way to interpret numbers:
• A single column of numbers (GLOBAL times)

★ One stimulus time per row
★ Times are relative to first image in dataset being at t = 0
★ May not be simplest to use if multiple runs are catenated

• One row for each run within a catenated dataset (LOCAL times)
★ Each time in j th row is relative to start of run #j being t = 0
★ If some run has NO stimuli in the given class, just put a
single “*” in that row as a filler

o Different numbers of stimuli per run are OK
o At least one row must have more than 1 time
 (so that the LOCAL type of timing file can be told from the GLOBAL)

• Two methods are available because of usersʼ diverse needs
★ N.B.: if you chop first few images off the start of each run,
the inputs to -stim_times must be adjusted accordingly!

o Better to use -CENSORTR to tell 3dDeconvolve just to ignore those points

4.7
9.6

11.8
19.4

4.7 9.6 11.8 19.4
*
8.3 10.6

–25–

–26–

• Smooth data in space before analysis
• Average data across anatomically-

selected regions of interest ROI (before or
after analysis)
• Labor intensive (i.e., hire more students)

• Reject isolated small clusters of above-
threshold voxels after analysis

Spatial Models of ActivationSpatial Models of Activation

–27–

Spatial Smoothing of DataSpatial Smoothing of Data
• Reduces number of comparisons
• Reduces noise (by averaging)
• Reduces spatial resolution
• Blur it enough: Can make FMRI results

look like low resolution (1990s) PET data
• Smart smoothing: average only over

nearby brain or gray matter voxels
• Uses resolution of FMRI cleverly
• 3dBlurToFWHM3dBlurToFWHM and and 3dBlurInMask3dBlurInMask

• Or: average over selected ROIs
• Or: cortical surface based smoothing

–28–

3dBlurToFWHM
• New program to smooth FMRI time series datasets to
a specified smoothness (as estimated by FWHM of noise
spatial correlation function)
★ Donʼt just add smoothness (à la 3dmerge) but control it (locally

and globally)
★ Goal: use datasets from diverse scanners
• Why blur FMRI time series?

★ Averaging neighbors will reduce noise
★ Activations are (usually) blob-ish (several voxels across)
★ Diminishes the multiple comparisons problem
• 3dBlurToFWHM and 3dBlurInMask blur only inside
a mask region
★ To avoid mixing air (noise-only) and brain voxels
★ Partial Differential Equation (PDE) based blurring method

o 2D (intra-slice) or 3D blurring

–29–

Spatial ClusteringSpatial Clustering
• Analyze data, create statistical map

(e.g., t statistic in each voxel)
• Threshold map at a low t value, in each

voxel separately
• Will have many false positives

• Threshold map by rejecting clusters of
voxels below a given size
• Can control false-positive rate by

adjusting t threshold and cluster-size
thresholds together

–30–

MMuullttii -Voxel
Statistics

Spatial Clustering
&&

False Discovery Rate:

“Correcting” the Significance

–31–

Basic Problem
• Usually have 30–200K FMRI voxels in the brain
• Have to make at least one decision about each one:

★ Is it “active”?
o That is, does its time series match the temporal pattern of
activity we expect?

★ Is it differentially active?
o That is, is the BOLD signal change in task #1 different
from task #2?

• Statistical analysis is designed to control the error
rate of these decisions
★ Making lots of decisions: hard to get perfection in
statistical testing

–32–

• Two types of errors
★ What is H0 in FMRI studies? H0: no effect (activation, difference, …) at a voxel
★ Type I error = Prob(reject H0 when H0 is true) = false positive = p value

Type II error = Prob(accept H0 when H1 is true) = false negative = β
power = 1–β = probability of detecting true activation

★ Strategy: controlling type I error while increasing power (decreasing type II errors)
★ Significance level α (magic number 0.05) : p < α

Type II Type II ErrorError
(defendant
very happy)

Correct

Fail to Reject
Presumption of
Innocence (Not
Guilty Verdict)

Correct
Type I Type I ErrorError

(defendant
very unhappy)

Reject
Presumption of
Innocence
(Guilty Verdict)

Defendant
Guilty

Defendant
Innocent

Justice System: Trial
 Hidden Truth

Type II Type II ErrorError
(false negative)Correct

Don’t Reject H0
(decide voxel isn’t
activated)

CorrectType I Type I ErrorError
(false positive)

Reject H0
(decide voxel is
activated)

H0 False
Activated

H0 True
Not Activated

Statistics: Hypothesis Test
 Hidden Truth

Multiple Testing Corrections

–33–

• Family-Wise Error (FWE)
★ Multiple testing problem: voxel-wise statistical analysis

o With N voxels, what is the chance to make a false positive error
(Type I) in one or more voxels?

 Family-Wise Error: αFW = 1–(1–p)N →1 as N increases
o For N⋅p small (compared to 1), αFW ≈ N⋅p
o N ≈ 20,000+ voxels in the brain
o To keep probability of even one false positive αFW < 0.05 (the

“corrected” p-value), need to have p < 0.05 / 2×104 = 2.5×10–6

o This constraint on the per-voxel (“uncorrected”) p-value is so stringent
that weʼll end up rejecting a lot of true positives (Type II errors) also,
just to be safe on the Type I error rate

• Multiple testing problem in FMRI
★ 3 occurrences of multiple tests: individual, group, and conjunction
★ Group analysis is the most severe situation (have the least data,

considered as number of independent samples = subjects)

–34–

• Two Approaches to the “Curse of Multiple Comparisons”
★ Control FWE to keep expected total number of false positives below 1

o Overall significance: αFW = Prob(≥ one false positive voxel in the whole brain)
o Bonferroni correction: αFW = 1– (1–p)N ≈ Np, if p << N –1

 Use p = α /N as individual voxel significance level to achieve αFW = α
 Too stringent and overly conservative: p = 10–8…10–6

o Something to rescue us from this hell of statistical super-conservatism?
 Correlation: Voxels in the brain are not independent

 Especially after we smooth them together!
 Means that Bonferroni correction is way way too stringent

 Contiguity: Structures in the brain activation map
 We are looking for activated “blobs”: the chance that pure noise (H0) will

give a set of seemingly-activated voxels next to each other is lower than
getting false positives that are scattered around far apart

 Control FWE based on spatial correlation (smoothness of image noise) and
minimum cluster size we are willing to accept

★ Control false discovery rate (FDR)
o FDR = expected proportion of false positive voxels among all detected voxels

 Give up on the idea of having (almost) no false positives at all

–35–

• FWE control in AFNI
★ Monte Carlo simulations with program AlphaSim

o Named for a place where primary attractions are randomization experiments
o Randomly generate some number (e.g., 1000) of brain volumes with white

noise (spatially uncorrelated)
 That is, each “brain” volume is purely in H0 = no activation
 Noise images can be blurred to mimic the smoothness of real data

o Count number of voxels that are false positives in each simulated volume
 Including how many are false positives that are spatially together in clusters

of various sizes (1, 2, 3, …)
o Parameters to program

 Size of dataset to simulate
 Mask (e.g., to consider only brain-shaped regions in the 3D brick)
 Spatial correlation FWHM: from 3dBlurToFWHM or 3dFWHMx
 Connectivity radius: how to identify voxels belonging to a cluster?

 Default = NN connection = touching faces
 Individual voxel significance level = uncorrected p-value

o Output
 Simulated (estimated) overall significance level (corrected p-value)
 Corresponding minimum cluster size at the input uncorrected p-value

Cluster Analysis: AlphaSim

–36–

• Example: AlphaSim -nxyz 64 64 20 -dxyz 3 3 5 \
 -fwhm 5 -pthr 0.001 -iter 1000 -quiet -fast
• Output is in 6 columns: focus on 1st and 6th columns (ignore others)

★ 1st column: cluster size in voxels
★ 6th column: alpha (α) = overall significance level = corrected p -value

 Cl Size Frequency CumuProp p/Voxel Max Freq Alpha
 1 47064 0.751113 0.00103719 0 1.000000
 2 11161 0.929236 0.00046268 13 1.000000
 3 2909 0.975662 0.00019020 209 0.987000
 4 1054 0.992483 0.00008367 400 0.778000
 5 297 0.997223 0.00003220 220 0.378000
 6 111 0.998995 0.00001407 100 0.158000
 7 32 0.999505 0.00000594 29 0.058000
 8 20 0.999825 0.00000321 19 0.029000
 9 8 0.999952 0.00000126 7 0.010000
 10 2 0.999984 0.00000038 2 0.003000
 11 1 1.000000 0.00000013 1 0.001000

 At this uncorrected p = 0.001, in this size volume, with noise of this smoothness:
the chance of a cluster of size 8 or larger occurring by chance alone is 0.029

 May have to run several times with different uncorrected p
 uncorrected (-pthr) p↑ ⇔⇔ required minimum cluster size↑

 See detailed steps at http://afni.nimh.nih.gov/sscc/gangc/mcc.html

–37–

False Discovery Rate in
• Situation: making many statistical tests at once

 e.g, Image voxels in FMRI; associating genes with disease
• Want to set threshold on statistic (e.g., F- or t-value) to

control false positive error rate
• Traditionally: set threshold to control probability of

making a single false positive detection
 But if we are doing 1000s (or more) of tests at once, we

have to be very stringent to keep this probability low
• FDR: accept the fact that there will be multiple

erroneous detections when making lots of decisions
 Control the fraction of positive detections that are wrong

o Of course, no way to tell which individual detections are right!
 Or at least: control the expected value of this fraction

–38–

FDR: q
•Given some collection of statistics (say, F-values from
3dDeconvolve), set a threshold h

•The uncorrected p-value of h is the probability that
F > h when the null hypothesis is true (no activation)
“Uncorrected” means “per-voxel”
The “corrected” p-value is the probability that any voxel is
above threshold in the case that they are all unactivated

 If have N voxels to test, pcorrected = 1–(1–p)N ≈ Np (for small p)
o Bonferroni: to keep pcorrected< 0.05, need p < 0.05 / N, which is very tiny

•The FDR q-value of h is the fraction of false positives
expected when we set the threshold to h
Smaller q is “better” (more stringent = fewer false detections)

–39–

Basic Ideas Behind FDR q
• If all the null hypotheses are true, then the statistical

distribution of the p-values will be uniform
 Deviations from uniformity at low p-values ⇒ true positives
 Baseline of uniformity indicates how many true negatives

are hidden amongst in the low p-value region
31,555 voxels

50 histogram bins
Red = ps from Full-F (real data)

Black = ps from pure noise (simulation)
(baseline level=false +)

True +

False +

threshold h

How q is Calculated from Data
• Compute p-values of each statistic: P1, P2, P3, ⋅⋅⋅ , PN

• Sort these: P(1) ≤ P(2) ≤ P(3) ≤ ⋅⋅⋅ ≤ P(N) {subscript() ≡ sorted}

• For k = 1..N, q(k) = minm ≥ k [N⋅P(m) /m]
 Easily computed from sorted p-values by looping

downwards from k = N to k = 1
• By keeping track of voxel each P(k) came from: can

put q-values (or z(q) values) back into image
 This is exactly how program 3dFDR works

• By keeping track of statistic value (t or F) each P(k)
came from: can create curve of threshold h vs. z(q)

• N.B.: q-values depend on the data in all voxels,
unlike these voxel-wise (uncorrected) p-values!
 Which is why it’s important to mask brain properly

–41–

Graphical Calculation of q
• Graph sorted p-values of voxel #k vs. κ =k / N (the cumulative histogram of p,

flipped sideways) and draw some lines from origin

Slope=0.10

q=0.10 cutoff

Real data: F-statistics from 3dDeconvolve

Ideal sorted p if no
true positives at all
(uniform distribution)

Very small p = very significant

N.B.: q-values depend on data
in all voxels,unlike voxel-wise

(uncorrected) p-values!

–42–

true + false +

Why This Line-Drawing Works
p = 1

p = 0
κ = k /N = fractional index κ=1κ = 0 κ = m1

line: p = qκ

Cartoon:
Lots of p≈0 values;

And the rest are
uniformly distributed

κ = κ#

line: p = (κ -m1)/(1-m1)

m1= true positive fraction (unknown)
1–m1= true negative fraction

Lines intersect at κ#= m1/[1–q(1–m1)]
False positives = κ#–m1

FDR = (False +)/(All +) = q(1–m1) ≤ q
More advanced FDR: estimate m1 also

Same Data: threshold F vs. z(q)

z≈1.96 is q≈0.05;
Corresponds
(for this data)

to F≈1.5

z=9 is q≈10–19 :
larger values of
z aren’t useful!

–44–

Recent Changes to 3dFDR
• Don’t include voxels with p=1 (e.g., F=0), even if they

are in the -mask supplied on the command line
 This changes decreases N, which will decrease q and so

increase z(q): recall that q(k) = minm ≥ k [N⋅P(m) /m]

• Sort with Quicksort algorithm
 Faster than the bin-based sorting in the original code
 Makes a big speed difference on large 1 mm3 datasets

o Not much speed difference on small 3 mm3 grids, since there aren’t
so many voxels to sort

• Default mode of operation is ‘-new’ method
 Prints a warning message to let user know things have

changed from the olden days
 User can use ‘-old’ method if desired

–45–

FDR curves: h vs. q
• 3dDeconvolve, 3dANOVAx, 3dttest, and
3dNLfim now compute FDR curves for all statistical
sub-bricks and store them in output header

• 3drefit -addFDR does
same for other datasets

 3drefit -unFDR can be
used to delete such info

• AFNI now shows p- and q-
values below the threshold
slider bar

• Interpolates FDR curve
 from header (threshold→z→q)

• Can be used to adjust threshold
by “eyeball”

–46–

q = N/A means itʼs not available MDF hint = “missed detection fraction”

FDR Statistical Issues
• FDR is conservative (q-values are too large) when voxels

are positively correlated (e.g., from spatially smoothing)
 Correcting for this is not so easy, since q depends on data

(including true positives), so a simulation like AlphaSim is hard
to conceptualize

 At present, FDR is an alternative way of controlling false
positives, vs. AlphaSim (clustering)

o Thinking about how to combine FDR and clustering
• Accuracy of FDR calculation depends on p-values

being uniformly distributed under the null hypothesis
 Statistic-to-p conversion should be accurate, which means

that null F-distribution (say) should be correctly estimated
 Serial correlation in FMRI time series means that
3dDeconvolve denominator DOF is too large

 ⇒ p-values will be too small, so q-values will be too small
o3dREMLfit can ride to the rescue!

–47–

–48–

• These 2 methods control Type I error in different sense
★FWE: αFW = Prob (≥ one false positive voxel/cluster in the whole brain)

 Frequentistʼs perspective: Probability among many hypothetical activation maps
gathered under identical conditions

 Advantage: can directly incorporate smoothness into estimate of αFW
★FDR = expected fraction of false positive voxels among all detected voxels

 Focus: controlling false positives among detected voxels in one activation map, as
given by the experiment at hand

 Advantage: not afraid of making a few Type I errors in a large field of true positives
★Concrete example

 Individual voxel p = 0.001 for a brain of 25,000 EPI voxels
 Uncorrected → ≈ 25 false positive voxels in the brain
 FWE: corrected p = 0.05 → ≈5% of the time would expect one or more false positive

clusters in the entire volume of interest
 FDR: q = 0.05 → ≈5% of voxels among those positively labeled ones are false positive

•What if your favorite blob fails to survive correction?
★Tricks (donʼt tell anyone we told you about these)

 One-tail t -test?
 ROI-based statistics – e.g., grey matter mask, or whatever regions you focus on

★Analysis on surface; or, Use better group analysis tool (3dLME, 3dMEMA, etc.)

FWE or FDR?

–49–

• Conjunction
★ Dictionary: “a compound proposition that is true if and only if all of its component

propositions are true”
★ FMRI: areas that are active under 2 or more conditions (AND logic)

o e.g, in a visual language task and in an auditory language task
★ Can also be used to mean analysis to find areas that are exclusively activated in

one task but not another (XOR logic) or areas that are active in either task (non-
exclusive OR logic)

★ If have n different tasks, have 2n possible combinations of activation overlaps in
each voxel (ranging from nothing there to complete overlap)

★Tool: 3dcalc applied to statistical maps
o Heaviside step function
 defines a On / Off logic
o step(t-a) = 0 if t < a
 = 1 if t > a
o Can be used to apply more than one threshold at a

time

Conjunction Analysis

a

–50–

• Example of forming all possible conjunctions
★ 3 contrasts/tasks A, B, and C, each with a t-stat from 3dDeconvolve
★ Assign each a number, based on binary positional notation:

o A: 0012 = 20 = 1 ; B: 0102 = 21 = 2 ; C: 1002 = 22 = 4
★ Create a mask using 3 sub-bricks of t (e.g., threshold = 4.2)
 3dcalc -a ContrA+tlrc -b ContrB+tlrc -c ContrC+tlrc \
 -expr '1*step(a-4.2)+2*step(b-4.2)+4*step(c-4.2)' \
 -prefix ConjAna

★ Interpret output, which has 8 possible (=23) scenarios:
 0002 = 0: none are active at this voxel
 0012 = 1: A is active, but no others
 0102 = 2: B, but no others
 0112 = 3: A and B, but not C
 1002 = 4: C but no others
 1012 = 5: A and C, but not B
 1102 = 6: B and C, but not A
 1112 = 7: A, B, and C are all active at this voxel

Can display
each

combination
with a

different
color and so
make pretty
pictures that
might even

mean
something!

–51–

• Multiple testing correction issue
★ How to calculate the p-value for the conjunction map?
★ No problem, if each entity was corrected (e.g., cluster-size thresholded at t

=4.2) before conjunction analysis, via AlphaSim
★ But that may be too stringent (conservative) and over-corrected
★ With 2 or 3 entities, analytical calculation of conjunction pconj is possible

 Each individual test can have different uncorrected (per-voxel) p
 Double or triple integral of tails of non-spherical (correlated) Gaussian

distributions — not available in simple analytical formulae
★ With more than 3 entities, may have to resort to simulations

 Monte Carlo simulations? (AKA: Buy a fast computer)
 Will Gang Chen write such a program? Only time will tell!

